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Performance-portability.

Summary and ongoing work.

For non-ice sheet modelers, this talk will show:

How one can rapidly develop a production-
ready scalable and robust code using open-
source libraries.

Recommendations based on numerical
lessons learned.

New algorithms / numerical techniques.
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for Ice Sheets & Glaciers

* Ice sheet dynamics are given by the “First-Order” Stokes PDEs: approximation* to
viscous incompressible quasi-static Stokes flow with power-law viscosity.
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* Viscosity u is nonlinear function given by “Glen’s law”:
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* Ice sheet dynamics are given by the “First-Order” Stokes PDEs: approximation* to
viscous incompressible quasi-static Stokes flow with power-law viscosity.
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* Relevant boundary conditions:

» Stress-free BC: 2u€;-n=0,onT,
* Floating ice BC:
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* Basal sliding BC: 2pé;-n + Pu; = 0, on Iy B = sliding coefficient = 0
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The PISCEES Project and the
Albany/FELIX Solver

“PISCEES” = Predicting Ice Sheet Climate & Evolution at Extreme Scales
5 Year Project funded by SciDAC, which began in June 2012

Sandia’s Role in the PISCEES Project: to develop and support a robust and
scalable land ice solver based on the “First-Order” (FO) Stokes physics
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p lgorithmic Choices for Albany/FELIX:
Discretization & Meshes

 Discretization: unstructured grid finite element method (FEM) " w "
* Can handle readily complex geometries. " ‘ﬂ
* Natural treatment of stress boundary v,
conditions. ; : g
* Enables regional refinement/unstructured P
meshes. * '

* Wealth of software and algorithm:s.

 Maeshes: can use any mesh but interested specifically in

» Structured hexahedral meshes (compatible with CISM).

 Structured tetrahedral meshes (compatible with MPAS)

* Unstructured Delaunay triangle meshes with regional
refinement based on gradient of surface velocity.

* All meshes are extruded (structured) in vertical direction as
tetrahedra or hexahedra.




qlgorithmic Choices for Albany/FELIX:
Nonlinear & Linear Solver

* Nonlinear solver: full Newton with analytic (automatic differentiation)
derivatives

* Most robust and efficient for steady-state solves.

e Jacobian available for preconditioners and matrix-vector products.
* Analytic sensitivity analysis.

* Analytic gradients for inversion.

* Linear solver: preconditioned iterative method

* Solvers: Conjugate Gradient (CG) or GMRES
* Preconditioners: ILU or algebraic multi-grid (AMG)

| .],cb‘futomgtl.c Preconditioned
Nonlinear Solve Di eren’Flatlon Iterative Linear Solve
forf(x) =0  ———  Jacobian: (G o GMRES):
(Newton) _ of Solve Jx =1
] ax | Sandia



The Albany/FELIX Solver:
Implementation in Albany using Trilinos

*Available on github: https://github.com/gahansen/Albany.

The Albany/FELIX First Order Stokes

solver is implemented in a Sandia
(open-source*) parallel C++ finite

element code called... /

Started
by A.
Salinger

“Agile Components”

Discretizations/meshes
Solver libraries
Preconditioners
Automatic differentiation
Many others!

Land Ice Physics Set
(Albany/FELIX code)

Other Albany

Parameter estimation
Uncertainty quantification
Optimization

Bayesian inference

Physics Sets

Configure/build/test/documentation

Use of Trilinos components has enabled the rapid development of the
Albany/FELIX First Order Stokes dycore!

See A. Salinger’s talk on Tuesday @ 2:40PM in MS225
“Albany: A Trilinos-based code for Ice Sheet Simulations and other Applications” @

Sandia
National
Laboratories



Verification/Mesh Convergence
Studies

Stage 1: solution verification on 2D MMS
problems we derived.
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Stage 2: code-to-code comparisons on canonical
ice sheet problems.

Stage 3: full 3D mesh convergence study on

Greenland w.r.t. reference solution.

Are the Greenland problems resolved?
Is theoretical convergence rate achieved?
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Mesh Partitioning & Vertical
Refinement

Mesh convergence studies led to some useful practical recommendations
(for ice sheet modelers and geo-scientists)!

Partitioning matters: good solver performance obtained with 2D
partition of mesh (all elements with same x, y coordinates on same

processor - right).

Number of vertical layers matters: more gained in refining # vertical

layers than horizontal resolution (below — relative errors for

Greenland).
Horiz. res.\vert. layers 5 10 20 40 80
8km 2.0e-1
4km 9.0e-2 | 7.8e-2
2km 4.6e-2 | 2.4e-2 | 2.3e-2
1km 3.8e-2 | 8.9e-3 | 5.5e-3 | 5.1e-3
500m 3.7e-2 | 6.7e-3 | 1.7e-3 | 3.9e-4 | 8.1e-5

>
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Mesh Partitioning & Vertical
Refinement

Mesh convergence studies led to some useful practical recommendations
(for ice sheet modelers and geo-scientists)!

Partitioning matters: good solver performance obtained with 2D
partition of mesh (all elements with same x, y coordinates on same

processor - right).

Number of vertical layers matters: more gained in refining # vertical

layers than horizontal resolution (below — relative errors for

'

Greenland).
Horiz. res.\vert. layers 5 10 20 40 80
8km 2.0e-1
4km 9.0e-2 | 7.8e-2
2km 4.6e-2 | 2.4e-2 | 2.3e-2
1km 3.8e-2 | 8.9e-3 | 5.5e-3 | 5.1e-3
500m 3.7e-2 | 6.7e-3 | 1.7e-3 | 3.9e-4 | 8.1e-5

Vertical refinement
to 20 layers
recommended for

1km resolution
horizontal

refinement.
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'Robustness of Newton’s Method via

Homotopy Continuation (LOCA)
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'Robustness of Newton’s Method via
Homotopy Continuation (LOCA)
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Hewton Iterations

* Newton’s method most robust with full step + homotopy continuation of
¥y — 10710 converges out-of-the-box!
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'Scalability via Algebraic Multi-Grid
With R. Tuminaro (SNL) Preconditioni ng

Bad aspect ratios ruin classical AMG convergence rates!
* relatively small horizontal coupling terms, hard to smooth horizontal errors

= Solvers (even ILU) must take aspect ratios into account

We developed a new AMG solver based on semi-coarsening (figure below)
* Algebraic Structured MG ( = matrix depend. MG) used with vertical line relaxation on

finest levels + traditional AMG on 1 layer problem

Algebraic Algebraic Unstructured Unstructured
Structured MG Structured MG AMG AMG
*With 2D partitioning and layer-wise node ordering, o
ndia
required for best performance of ILU. (lil] Neforal
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Scalability via Algebraic Multi-Grid
With R. Tuminaro (SNL) Preconditioni ng

Bad aspect ratios ruin classical AMG convergence rates!
* relatively small horizontal coupling terms, hard to smooth horizontal errors

= Solvers (even ILU) must take aspect ratios into account

We developed a new AMG solver based on semi-coarsening (figure below)
* Algebraic Structured MG ( = matrix depend. MG) used with vertical line relaxation on

finest levels + traditional AMG on 1 layer problem New AMG preconditioner is
available in ML package of Trilinos!

Algebraic Algebraic Unstructured Unstructured
Structured MG Structured MG AMG AMG

Scaling studies (next 3 slides):

*With 2D partitioning and layer-wise node ordering, New AMG preconditioner vs. ILU* i
required for best performance of ILU. Lj National

Laboratories



Greenland Controlled Weak
Scalability Study

16,384 cores

a Weak Scalability: 8km, dkm, 2km, 1km, 500m GIS
10 1 . .
E ﬁ/
&
2" ﬂ
ai]
E
—=— Total Time - Mesh Import
—=— Total Linear Solve Time
—*— Finite Element Assembly Time 1
1
10 | 1 il 11l L Lo
u] 1 2 3 4 5
10 10 10 10 10 10
# cores
4 cores
334K dofs

8 km Greenland,
5 vertical layers

1.12B dofs(!)

0.5 km Greenland,
80 vertical layers

X 84
scale up

Weak scaling study with fixed
dataset, 4 mesh bisections.

~70-80K dofs/core.

Conjugate Gradient (CG)
iterative method for linear solves

(faster convergence than
GMRES).

New AMG preconditioner
developed by R. Tuminaro based
on semi-coarsening (coarsening
in z-direction only).

Significant improvement in
scalability with new AMG
preconditioner over ILU

preconditioner!
N/ Laboratories



Greenland Controlled Weak
Scalability Study

New AMG preconditioner

ILU preconditioner
103 Weak Scalability: 8km, dkm, 2km, 1km, 500m GIS 3 Weak Scalability: 8k, 4km, 2km. 1km, 500m GIS
: 10°f . .
g 3
2" ﬁ/ | 2} -
= ] E I
—=— Total Time - Mesh Import | : —=— Total Time
—=— Total Linear Zole Time i —=— Total Lin Solve Time
—*— Finite Element Assembly Time 1 - —=—FE Assembly Time
1
10 ! B ! el ! e I = o I 1 1 111 1l ! L1 1l 1 L1111
0 1 2 3 4 5 10 . 1 - ; p .
10 10 10 10 10 10 10 10 10 10 10 10
# cores
# cores
4 cores 16,384 cores e Significant improvement in
334K dofs 1.12B dofs(!) scalability with new AMG
8 km Greenland, x g4 0.5 km Greenland, preconditioner over ILU
5 vertical layers scale up 80 vertical layers

preconditioner!

e/ Lahoratories



P 30
}.‘ Fine-Resolution Greenland Strong

time: {sec)

Scaling Study

Strong scaling on 1km Greenland with 40 vertical layers (143M dofs, hex elements). g

Initialized with realistic basal friction (from deterministic inversion) and

temperature fields — interpolated from coarser to fine mesh.

Iterative linear solver: CG.

Preconditioner: ILU vs. new AMG (based on aggressive semi-coarsening).

ILU

1024
cores

Total Time - 11

Lingar Zolve Time
—FEA Time
Timeslter.

——-Slope = 1

ILU preconditioner scales better than AMG but ILU-preconditioned solve is slightly slower

# cores

16,384 |-
cores

AMG

1024
cores

# cores

beta
80
i]OO
=10
E
-[50.1
0.01
Total Time - {0
Linear Solve Time
—FEATime
Tirmedlter,
— =~ Elope = 1
16,384 ||
cores

(see Kalashnikova et al /ICCS 2015).
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‘ Moderate Resolution Antarctica
Weak Scaling Study
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Initialized with realistic basal friction (from deterministic inversion) and

. ™.
temperature field from BEDMAP2. e e
* Iterative linear solver: GMRES. ,{%
* Preconditioner: ILU vs. new AMG based on aggressive semi-coarsening M T
(Kalashnikova et al GMD 2014, Kalashnikova et al ICCS 2015, Tuminaro et al SISC
2015). e
o . ILU Severe ill-conditioning AMG .
caused by ice shelves! Fotal Time -1
Linsar Zoke Time
1wt ] 4 —FEATims
o ___,,,vf-f"’“f . Timedlter F
H;f-' 10 Total Time - [0 % 1o —
< tigza;lsm fime £ (vertical > horizontal
- me .
10 Timedlter, i ot b ) coupllng)
+
Neumann BCs
16 | i, | 1024 6 | ... 11024 -
cores # cores cores cores # cores cores nearly singular
” ) » . submatrix associated
GMRES less sensitive than CG to rounding errors from AMG preconditioner less sensitive with vertical lines
ill-conditioning [also minimizes different norm]. than ILU to ill-conditioning. = Tahomatonas



Performance-Portability via
Kokkos

With I. Demeshko (SNL)

We need to be able to run Albany/FELIX on new architecture machines (hybrid
systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) .

* Kokkos: Trilinos library and programming model that provides performance
portability across diverse devises with different memory models.

* With Kokkos, you write an algorithm once, and just change a template parameter
to get the optimal data layout for your hardware. =

See |. Demeshko’s talk today @ 3:40PM in MS43 Sandia

“A Kokkos Implementation of Albany: A Performance Portable Multiphysics Simulation Code” | National




' Performance-Portability via
Kokkos (continued)

* Right: results for a mini-app that uses finite . ::::;?:fpu (K20)
element kernels from Albany/FELIX but none —intel Sandy Bridge
of the surrounding infrastructure. 01 || —initial code (1 core)

* “H#of elements” = threading index //
(allows for on-node parallelism). _ -~

e # of threads required before the Phi
and GPU accelerators start to get

enough work to warrant overhead:
~100 for the Phi and ~1000 for the GPU. 0.0001

time, sec

10 100 1000 10000
* Below: preliminary results for 3 of the finite # of elements
element assembly kernels, as part of full Albany/FELIX code run.
Kernel Serial | 16 OpenMP Threads | GPU Note: Gather
Viscosity Jacobian 20.39s 2.06s 0.54 s Coordinates
routine requires
Basis Functions w/ FE Transforms | 8.75s 0.94s 1.23s copying data from
Gather Coordinates 0.097 s 0.107 s 5.77s host to GPU.
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Summary and Ongoing Work

Summary:

This talk described the development of a finite element land ice solver known as
Albany/FELIX written using the libraries of the Trilinos libraries.

The code is verified, scalable, robust, and portable to new-architecture machines! This

is thanks to:

 Some new algorithms (e.g., AMG preconditioner) and numerical techniques (e.g.,
homotopy continuation).

 The Trilinos software stack.

Use of Trilinos libraries has enabled the rapid development of this code!

Ongoing/future work:

Dynamic simulations of ice evolution.
Deterministic and stochastic initialization runs (see M. Perego’s talk).
Porting of code to new architecture supercomputers (see I. Demeshko’s talk).

Articles on Albany/FELIX [GMD, ICCS 2015], Albany [J. Engng.] (see A. Salinger’s talk),
AMG preconditioner (SISC).
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Thank you! Questions?
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